Phase-separating binary fluids under oscillatory shear
نویسندگان
چکیده
منابع مشابه
Convection-driven pattern formation in phase-separating binary fluids.
Using a thermal-lattice Boltzmann model, we examine the rich phase behavior that develops when partially miscible fluids evolve in the presence of a vertical temperature gradient, which encompasses the critical temperature T(c) of the mixture. In particular, a binary AB fluid is confined between two plates in a gravitational field. The upper plate is fixed below T(c) and hence, the nearby fluid...
متن کاملViscoelastic properties of dynamically asymmetric binary fluids under shear flow.
We study theoretically the viscoelastic properties of sheared binary fluids that have strong dynamical asymmetry between the two components. The dynamical asymmetry arises due to asymmetry between the viscoelastic stresses, particularly the bulk stress. Our calculations are based on the two-fluid model that incorporates the asymmetric stress distribution. We simulate the phase separation proces...
متن کاملControlled motion of Janus particles in periodically phase-separating binary fluids.
We numerically investigate the propelled motions of a Janus particle in a periodically phase-separating binary fluid mixture. In this study, the surface of the particle tail prefers one of the binary fluid components and the particle head is neutral in the wettability. During the demixing period, the more wettable phase is selectively adsorbed to the particle tail. Growths of the adsorbed domai...
متن کاملLattice Boltzmann simulations of microemulsions and binary immiscible fluids under shear
Large scale lattice Boltzmann simulations are utilized to investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear. We use a highly scalable parallel Fortran 90 code for the implementation of the simulation method and demonstrate that adding surfactant to a system of immiscible fluid constituents can change the mixture’s ...
متن کاملSlip, yield, and bands in colloidal crystals under oscillatory shear.
We study dense colloidal crystals under oscillatory shear using a confocal microscope. At large strains the crystals yield and the suspensions form shear bands. The pure harmonic response exhibited by the suspension rules out the applicability of nonlinear rheology models typically used to describe shear banding in other types of complex fluids. Instead, we show that a model based on the coexis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2003
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.67.056105